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INTRODUCTION 

The urinary bladder and its outlet, the urethra, serve 
2 main functions: the storage of urine without leakage, 
and the periodic release of urine. These 2 functions 
are dependent on central as well as peripheral 
autonomic and somatic neural pathways.l-b Since the 
lower urinary tract switches, in an all-or-none man- 
ner, between storage and elimination of urine, many 
of the neural circuits controlling voiding exhibit 
phasic patterns of activity rather than the tonic pat- 
terns occurring in autonomic pathways to other 
viscera. Micturition is a special visceral mechanism 
because it is dependent on voluntary control, which 
requires the participation of higher centers in the 
brain, whereas many other visceral functions are regu- 
lated involuntarily. Because of these complex neural 
regulations, the central nervous system control of 
the lower urinary tract is susceptible to a variety of 
neurologic disorders. 

This paper reviews studies in animals and 
humans that have led to our current concepts of the 
neural mechanisms underlying urinary continence 
and micturition. In addition, the final section of the 
paper focuses on recent evidence indicating that 
plasticity in bladder afferent pathways is involved in 
the reorganization of the micturition reflex pathways 
in various pathologic conditions. 

N EU ROANATOMY AND 
NEUROPHARMACOLOGY 

The storage and elimination of urine are dependent 
on the reciprocal activity of 2 functional units in the 
lower urinary tract: (1) a reservoir (the bladder); and 
(2) an outlet (bladder neck, smooth and striated 
sphincter muscles of the urethra). During urine stor- 
age, the bladder outlet is closed and the bladder 
smooth muscle is quiescent, allowing intravesical 
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pressure to remain low over a wide range of bladder 
volumes. During voluntary voiding, the initial event is 
a relaxation of the pelvic floor and striated urethral 
sphincter muscles, followed by a detrusor muscle con- 
traction and opening of the bladder neck. Reflex inhi- 
bition of the smooth and striated urethral sphincter 
muscles also occurs during micturition. This activity 
is mediated by 3 sets of peripheral nerves: para- 
sympathetic (pelvic), sympathetic (hypogastric) and 
somatic (pudendal) nerves1-’ (Fig. 1). These nerves 
also contain afferent axons terminating in the lower 
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Fig. 1. Diagram showing the sympathetic, parasympathetic 
and somatic innervation of the lower urinary tract. Sym- 
pathetic preganglionic pathways emerge from the 
thoracolumbar cord (Tll-L2) and pass to the inferior 
mesenteric ganglia. Preganglionic and postganglionic syni- 
pathetic axons then travel in the hypogastric nerve to the 
pelvic ganglia and lower urinary tract. Parasympathetic 
preganglionic axons, which originate in the sacral cord 
(S2-S4), pass in the pelvic nerve to ganglion cells in the 
pelvic ganglia, and postganglionic axons innervate the 
bladder and urethrd smooth muscle. Sacral somatic path- 
ways are contained in the pudendal nerve, which provides 
an innervation to the external urethral sphincter striated 
muscles. Afferent axons from the lower urinary tract are 
carried in these 3 nerves. 
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urinary tract; the most important afferents for 
initiating micturition are those carried in the pelvic 
nerve. 

Efferent Pathways 

The parasympathetic efferent pathway represents 
the major excitatory input to the bladder. Para- 
sympathetic preganglionic axons originate in the 
intermediolateral column of the S2 to S4 spinal cord 
and terminate on postganglionic neurons in the blad- 
der wall and in the pelvic plexus, which is a neural 
network located on lateral surface of the rectum in 
humans (Fig. 1). The parasympathetic preganglionic 
axons release acetylcholine, which activates post- 
synaptic nicotinic receptors (ganglionic type; N,). I 4 , l 5  

Nicotinic transmission at ganglionic synapses can be 
regulated by various modulatory synaptic mechanisms 
that involve muscarinic (MI, M,), adrenergic (a, my 
purinergic, and enkephalinergic r e ~ e p t o r s ' ~ ' ~ - ~ ~  (Fig. 
2A). Parasympathetic postganglionic neurons in turn 
provide an excitatory input to the bladder smooth 
muscle. 

Parasympathetic postganglionic nerve terminals 
release acetylcholine, which can excite various 
muscarinic receptors including 2 subtypes (M?, MJ , 
which are present in the detrusor muscle."-'-' 
Receptor binding and molecular biological techniques 
indicate that M, receptors are predominant in 
detrusor muscle o? animals and humans.25 However, 
M, receptors are most important for mediating 
neurally evoked smooth-muscle contractions in the 

It has been postulated that M, receptors 
may function to inhibit adenylate cyclase and thereby 
block the Padrenoceptor signaling mechanism, which 
facilitates bladder relaxation during urine storage." 
M, receptors are also involved in a presynaptic inhibi- 
tion of acetylcholine release from postganglionic nerve 
terminals in the bladder. Presynaptic MI muscarinic 
autoreceptors, which are activated during high- 
frequency nerve firing, can facilitate acetylcholine 
release, amplify the parasympathetic excitatory input 
to the bladder, and thereby promote complete bladder 
e m ~ t y i n g ~ ~ . ' ~  (Fig. 2B). 

Adenosine triphosphate (ATP), which is a cotrans- 
mitter also released from parasympathetic post- 
ganglionic terminals acts on P,, purinergic receptors 
to induce a rapid onset, transient contraction of 
the bladder15i30 (Fig. 2B). Due to the presence of 
adenosine triphosphate-mediated neural transmis- 
sion, antimuscarinic agents do not completely abolish 
neurally evoked bladder contractions in animals or 
humans, although the contribution of the purinergic 
pathway in humans seems to be sma11.7~30-32 

The parasympathetic input to the urethra elicits 
inhibitory effects mediated at least in part via the 
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Fig. 2. Diagram of the interaction between neurotrans- 
mitters and their receptors in the parasympathetic pathways 
to the lower urinary tract. (A) ganglionic level. Homo- 
synaptic and heterosynaptic (sympathetic) modulation of 
ganglionic transmission are shown. (B) postganglionic level. 
Facilitatory and inhibitory responses are indicated by plus 
and minus in parentheses, respectively; circles indicate 
exocytosis from synaptic vesicles; dotted line indicates dif- 
fusion. Abbreviations: acetylcholine (ACh), enkephalin 
(ENK), norepinephrine (NA), vasoactive intestinal 
polypeptide (VIP), adenosine triphosphate (ATP), nitric oxide 
(NO), neuropeptide Y (NPY), nicotinic receptor (NJ, 
muscarinic receptors (M,, M2, and M,), adrenergic receptors 
(a,, a?, and /T), purinergic receptor (P2x ), NPY receptor (Y), 
VIP receptor (VIP), cyclic guanosine monophosphate 
(cCMP). Note that NO, which is  a gas, diffuses into the 
postsynaptic site and increases the concentration of 
intracellular cGMP, which in turn induces other actions. 

release of nitric oxide, which directly relaxes the ure- 
thral smooth In contrast to other trans- 
mitters that are stored and released from synaptic 
vesicles by exocytosis, nitric oxide is not stored, but 
is synthesized immediately prior to release by the 
enzyme nitric oxide synthase (NOS). NOS is acti- 
vated by calcium ion (Ca2+) influx during the action 
potential and then generates nitric oxide from 
L-arginine. Nitric otide, which is a gas, can diffuse out 
of the nerve terminals. NOS-containing nerve termi- 
nals are found more densely in the bladder base and 
urethra than in the detrusor.'* 

112 



Neural Control of the lower Urinary Tract N. Voshimura and W.C. de Groat 

Although the primary inhibitory transmitter in ure- 
thral smooth muscle seems to be nitric 0 x i d e , ~ 3 ~ ~ , ~ " * ~ ~  
another factor mediating long-lasting urethral relaxa- 
tion is released during high stimulation frequency.3g 
in other parasympathetic pathways such as those to 
vascular smooth muscle, the stomach, or the airways, 
vasoactive intestinal polypeptide peptide has been 
sbnwn to colocalize with nitric oxide and act as a 
second relaxant factor.I5 Similarly, in the rabbit 
urethra, it was found that fast and slow components 
of neurally evoked relaxation were suppressed by a 
NOS inhibitor and a vasoactive intestinal polypeptide 
(VIP) antagonist, respectively."n Vasoactive intestinal 
polypeptide-containing nerve terminals are prominent 
in the urethra3"; and vasoactive intestinal polypeptide, 
choline acetyltransferase, and NOS appear to colo- 
calize in neurons in the major pelvic ganglia of the 
rat.4' Thus, it seems reasonable to assume that the 
excitation of sacral parasympathetic efferent path- 
ways induces a bladder contraction via acetylcholine/ 
adenosine triphosphate release and urethral relaxa- 
tion via nitric oxide/vasoactive intestinal polypeptide 
release (Fig. 2B). 

Sympathetic preganglionic neurons located within 
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spinal cord make synaptic connections with post- urethra bladder 
ganglionic neurons in the inferior mesenteric gan- 
glion, as well as with postganglionic neurons in the 
paravertebral ganglia and pelvic ganglia1-'~1"~"2 (Fig. 1). 
Ganglionic transmission in sympathetic pathways is 
also mediated by acetylcholine acting on N, nicotinic 
receptors (Fig. 3A). Sympathetic postgangkonic ter- 
minals, which release norepinephrine, elicit contrac- 
tions of the bladder base and urethral smooth muscle, 
and relaxation of the bladder body mediated mainly 
though al- and /I,-adrenoceptors, respectively, 
although the possible- involvement of a,- and PI- 
adrenoceptors has also been suggested' '-'A' (Fig. 3B). 
In addition, postganglionic sympathetic input to blad- 
der parasympathetic ganglia can facilitate and inhibit 
parasympathetic ganglionic transmission via a, and /I 
adrenoceptors and a, adrenoceptors, respectively2-1i,1x 
(Fig. 2A). In urethral and prostatic smooth muscle, 
sympathetic excitation is mediated by an alA 
adrenoceptor subtype."' 

Somatic efferent pathways that originate from 
the motoneurons in Onufs nucleus of the anterior 
horn, of the S2 to S4 spinal cord innervate the 
external striated urethral sphincter muscle and the 
pelvic floor musculature (Fig. 1). Somatic nerve 
terminals release acetylcholine, which acts on 
nicotinic receptors (skeletal muscle type; N,) to 
induce a muscle contraction. The striated ure- 
thral sphincter also receives noradrenergic inputs 
from sympathetic The combined activa- 
tion of sympathetic and somatic pathways elevates 

Fig. 3. Diagram of the interaction between neuro- 
transmitters and their receptors in the sympathetic pathways 
to the lower urinary tract. (A) ganglionic level. (B) post- 
ganglionic level. Facilitatory and inhibitory responses 
are indicated by plus and minus in parentheses, respec- 
tively; circles indicate exocytosis from synaptic vesicles. 
Abbreviations: acetylcholine (ACh), norepinephrine (NA), 
neuropeptide Y (NPY), nicotinic receptor (NL), muscarinic 
receptors (MI), adrenergic receptors (a l ,  a, ,  PI and PJ, NPY 
receptor (Y). 

bladder outlet resistance and contributes to urinary 
continence. 

Several other nonadrenergic-noncholinergic trans- 
mitters have been identified as modulators of efferent 
inputs to the lower urinary tract. Leucine enkephalin 
released by preganglionic neurons inhibits cholinergic 
transmission via 6 opioid receptors in pelvic gan- 
glia'.2"."q (Fig. 2A). In contrast, vasoactive intestinal 
polypeptide and substance P facilitate ganglionic 
transmission in pelvic ganglia.1b,5n,51 Neuropeptide Y, 
which is contained in adrenergic and cholinergic 
nerve terminals, elicits a prejunctional inhibition 
of norepinephrine and acetylcholine release from 
postganglionic nerve  terminal^^'^^^ (Figs. 2B and 
3B). 

Afferent Pathways 
Sensory information, including the feeling of bladder 
fullness or bladder pain, is conveyed to the spinal cord 
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via afferent axons in the pelvic and hypogastric 
nerves.H I 3  Neuronal somata of these afferent nerves 
are located in the dorsal root ganglia at the S2 to S4 
and T11 to L2 spinal segmental levels (Fig. 1). The 
afferent fibers carry impulses from tension receptors 
and nociceptors in the bladder wall to neurons in the 
dorsal horn of the spinal cord. Afferent fibers passing 
in the pelvic nerve to the sacral cord are responsible 
for initiating the micturition reflex. These bladder 
afferents have small myelinated (AGfiber) or un- 
myelinated (C-fibers) ax on^.^^-^" Electrophysiologic 
studies in cats and rats have shown that the normal 
micturition reflex is mediated by small, myelinated 
AGfiber afferents that respond to bladder disten- 
tion.5n.54 In cats, the C-fiber afferents have high 
thresholds and are usually unresponsive to mech- 
anical stimuli such as bladder distention; they 
have therefore been termed "silent C-fibers". How- 
ever, many of these fibers do respond to chemical, 
noxious or cold s t i m ~ l i . ' * . ' ~ . ~ ~  A recent study in the rat 
using patch clamp techniques revealed that C-fiber 
afferent neurons are relatively inexcitable due to 
presence of high-threshold, tetrodotoxin-resistant 
sodium channels and low-threshold, A-type potas- 
sium channels.5x Activation of C-fiber afferents by 
chemical irritation induces bladder hyperreflexia 
that is blocked by administration of capsaicin, a 
neurotoxin of C-fiber afferents. 1-5" However, since 
capsaicin does not block normal micturition re- 
flexes, C-fiber afferents are not essential for normal 

Immunohistochemical studies indicate that blad- 
der afferent neurons contain various neuropeptides 
such as substance P, calcitonin gene-related peptide 
(CGFU'), vasoactive intestinal polypeptide, and 
enkephalin (Fig. 4).1.12*b3-b4 The distribution of these 
peptidergic afferent terminals in the spinal cord is 
similar to that of central projections of bladder affer- 
ent neurons."."' Substance P and calcitonin gene- 
related peptide are present in a large percentage of 
C-fiber afferent neurons."."~ The release of these 
peptides in the bladder wall is known to trigger in- 
flammatory responses, including plasma extravasation 
or vasodilation."9li 

voiding.l,ll,bO "2 

REFLEX MECHANISMS CONTROLLING 
MICTURITION 

Storage Reflexes 
The bladder functions as a low pressure reservoir 
during urine storage. In both humans and animals, 
bladder pressures remain low and relatively constant 
when bladder volume is below the threshold for void- 
ing. This is mainly due to the combined effect of a 
passive phenomenon depending on viscoelastic prop- 

dorsal mot gangllon 

Fig. 4. Diagram showing the interaction of neurotransmitters 
and chemical mediators with their receptors in bladder affer- 
ent pathways (especially in C-fiber afferents): (A) spinal cord, 
(B) urinary bladder. Abbreviations: calcitonin gene-related 
peptide (CGRP), substance P (SP), neurokinin A (NKA), 
proton (Hi), histamine (Hist), bradykinin (BK), glutamate 
(Glu), nitric oxide (NO), prostaglandin (PG), CCRP receptor 
(CGRP), tachykinin receptors (NK, and NK,), glutamater- 
gic receptors (N-methybaspartate INMDAI and a-amino- 
.~-hytlroxy-5-methyl isox~~~ol~-4-propioi i~~te IAMPAI), vmi- 
lloid receptor (Caps), histamine receptor (H, ) ,  bradykinin 
receptor (6 ,), prostaglandin receptor (PG), cyclic guanosine 
monophosphate (cGMP), cyclo-oxygenase (COX). Note that 
protons, histamine, and bradykinin released by inflanima- 
tion induce an influx of calcium ions (Ca"), which triggers 
the release o i  neuropeptides and/or production of 
prostaglandin mediated by cyclo-oxygenase. Prostaglandin, 
which is  also released from target cells (e.g., mast cells) by 
tachykinins, can act back on afferent terminals and sensitize 
afferent receptors to facilitate the release of transmitters. 
Circles indicate exocytosis froni synaptic vesicles; dotted 
line indicates diffusion. 

erties of the bladder wall, and quiescence of the 
parasympathetic pathway to the bladder.1.'*5 In addi- 
tion, during bladder filling, afferent activity arising 
in the bladder activates a sacral-to-thoracolumbar 
intersegmental spinal reflex pathway, which triggers 
firing in sympathetic pathways to the bladder.',"' 
Activation of sympathetic efferents then mediates an 
inhibition of bladder activity and contraction of the 
bladder neck and proximal urethra."8 Pudendal 
motoneurons are also activated by vesical afferent in- 
put as the bladder fills, thereby inducing a contraction 
of the striated sphintter muscle, which contributes to 
urinary ~ o n t i n e n c e ? ~ ~ ~ "  Thus, urine storage is mainly 
controlled by reflexes integrated in spinal cord (Fig. 
5A). However, it is also reported that a supraspinal 
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Urine storage center is located in the dorsolateral 
pns. Descending inputs from this region activate the 
#udendal motoneurons to increase urethral resistance 
pig. 5A).713'i 

Uoiding Reflexes 
h e n  Madder volume reaches the micturition 
,&dmld, afferent activity originating in bladder 
acchanoceptors triggers micturition reflexes, which 
consist of firing in the sacral parasympathetic path- 
ways and inhibition of sympathetic and somatic path- 
ways (Fig 5B). This leads to a contraction of the 
bladder and a concomitant relaxation of the urethra. 
The afferent fibers that trigger micturition in the rat 

A: storage reflexes B: voiding reflexes 
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Fig. 5. Diagrams showing neural circuits controlling con- 
tinence and micturition. (A) urine storage reflexes. During 
urine storage, bladder distention produces low level firing in 
bladder afferent pathways, which in turn stimulates ( 1 )  the 
sympathetic outflow to the bladder outlet (bladder base and 
urethra) and ( 2 )  pudendal outflow to the external sphincter 
muscle. These responses are elicited by spinal reflex path- 
ways. Sympathetic firing also inhibits detrusor muscle activ- 
ity and transmission in bladder ganglid. A region in the 
rostral pons (pontine storage center) increases external 
urethral sphincter activity. (B) Voiding reflexes. During 
elimination of urine, intense bladder afferent firing activates 
spinobulbospinal reflex pathways passing through the 
pontine micturition center, which stimulate the para- 
sympathetic outflow to the bladder and internal sphincter 
smooth muscle and inhibit the sympathetic and pudendal 
outflow to the bladder outlet. Ascending afferent input from 
the spinal cord may pass through relay neurons in the 
periaqueductal gray (PAC) before reaching the pontine 
micturition center. 

and cat are small myelinated A6-fibers.j' jb These 
bladder afferents in the pelvic nerve synapse on 
neurons in the sacral spinal cord, which then send 
their axons rostrally to a micturition center in the 
dorsolateral pons. This center contains neurons that 
are essential for inducing voiding r e f l e x e ~ . ~ ~ , ~ ~ , ' ~  7b 

Bilateral lesions in the region of the locus coeruleus in 
the cat or the dorsolateral tegmental nucleus in the rat 
abolish micturition, while electric or chemical stimu- 
lation of this region induces a bladder contraction and 
a reciprocal relaxation of the urethra, leading to blad- 
der 77 Studies in the rat and cat indicate 
that activity ascending from the spinal cord may pass 
through a relay center in the periaqueductal gray 
before reaching the pontine micturition center.'X-Hn 
Thus, voiding reflexes depend on a spinobulbospinal 
pathway, which passes through an integrative center 
in the brain (Fig. 5B). This center functions as an 'on- 
off switch activated by afferent activity derived from 
bladder mechanoceptors, and also receives inhibitory 
and excitatory inputs from the brain regions rostral to 
the pons. 

Neurotropic viruses, such as pseudorabies virus, 
have been particularly useful in identifying the central 
neural pathways involved in micturition. These 
viruses can be injected into a target organ (urinary 
bladder, urethra, or urethral sphincter), and then 
move intra-axonally from the periphery to the central 
nervous system, where they replicate and then pass 
retrogradely across synapses to infect second- and 
third-order neurons in the neural pathways. Since the 
pseudorabies virus can be transported across many 
synapses, it could sequentially infect all of the neurons 
that connect directly or indirectly to the lower urinary 
tract. The pseudorabies virus has been used in the 
ratx' w and catRi to identify neurons in the spinal 
cord and the brain involved in the control of the 
lower urinary tract. In the rat, transneuronal virus- 
tracing methods have identified many populations of 
central neurons that are involved in the control 
of bladder, urethra, and urethral sphincter. Injection 
of pseudorabies virus into the bladder labeled several 
areas of the brain stem, including the laterodorsal 
tegmental nucleus (the pontine micturition center); 
the medullary raphe nucleus, which contains 
serotonergic neurons; the locus coeruleus, which con- 
tains noradrenergic neurons, the periaqueductal grey, 
and noradrenergic cell group-A5. Several regions in 
the hypothalamus and the cerebral cortex also had 
virus-infected cells. Neurons in the cortex were 
located primarily in the medial frontal cortex. Similar 
brain areas were labeled after injection of virus into 
the urethra and drethral sphincter, suggesting that 
coordination beheen  different parts of the lower uri- 
nary tract is mediated by  similar populations of neu- 
rons in the brain. 
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Reflex voiding is also facilitated by afferent inputs 
from the urethra. This urethrovesical reflex, triggered 
by urine flow into the urethra, enhances bladder con- 
tractions6 During voiding, activity in the pudendal 
efferent pathway to the striated urethral sphincter is 
suppressed to reduce outlet r e~ i s t ance . ’~~~~ , ’~  This 
mechanism is mainly due to an inhibition of the 
pudendal motoneurons by the descending inputs 
from the dorsolateral As mentioned above, 
an excitation of the sacral parasympathetic pathway 
also directly induces a relaxation of urethral smooth 
muscle mediated by the release of nitric oxide and 
vasoactive intestinal polypeptide. 

Supraspinal and Spinal Neurotransmitters 
Controlling Micturition 
Various neurotransmitters at the spinal and supra- 
spinal level are involved in regulation of micturition 
and continence (Fig. 6). Glutamic acid, which is the 
major excitatory transmitter in the central nervous 
system, has an important role in the control of 
the micturition reflex. Both N-methyl-D-aspartate 
(NMDA) and a-amino-3-hydroxy-5-methylis- 
oxazole-4-propionate (AMPA)/kainate receptors are 
involved in glutamatergic transmission in the 
micturition reflex However, the function 

Fig. 6. Diagram of neurotransmitters in spinal and 
supraspinal sites. Glutamate is  the major excitatory trans- 
mitter in the control of the micturition reflex. Modulation of 
the micturition reflex in the spinal cord occurs by segmental 
interneuronal mechanisms (ENK, GABA) or by descending 
input from the brain (5-HT, NA, CRF). Modulation in the 
pontine micturition center can be activated in part by 
input from cortical-diencephalic areas. Facilitatory and 
inhibitory responses are indicated by plus and minus in 
parentheses, respectively. Abbreviations: acetylcholine 
(ACh), dopamine (DA), enkephalin (ENK), glutamate 
(Glu), 5-hydroxytryptamine (5-HT), norepinephrine (NA), 
corticotropin-releasing factor (CRF), dopamine receptors (D, 
and D,), opioid rekeptors ( p  and a, yaminobutyric acid 
(GABA‘) receptors (A and B). 

of glutamate seems to vary under different experi- 
mental conditions. In anesthetized rats, intravenous 
or intrathecal administration of NMDA or AMPA/ 
kainate receptor antagonists suppressed the micturi- 
tion reflexRR qo-’2; whereas in unanesthetized rats, an 
NMDA receptor antagonist had a slight facilitatory 
effect on bladder activity although an AMPNkainate 
receptor antagonist still had a depressant effect.qL”“ 
However, a recent study indicated that synergic 
activation of both types of glutamate receptors is 
necessary to induce reflex activation of the bladder in 
unanesthetized decerebrate rats.95 AMPNkainate or 
NMDA receptor antagonists also suppress bladder 
contractions induced by electric stimulation of the rat 
pontine micturition center, indicating that AMPA/ 
kainate and NMDA glutamatergic excitatory mecha- 
nisms are involved in the descending limb of spino- 
bulbospinal micturition reflex.qb,qi 

Recent studies using spinal slice preparations from 
neonatal rats revealed that the sacral preganglionic 
neurons directly receive glutamatergic excitatory 
inputs from spinal interneurons in the region of the 
sacral parasympathetic nucleus.’* These inputs are 
mediated by both NMDA and AMPNkainate re- 
ceptors. Interneurons in these regions also exhibit 
increased expression of an immediate early gene, c-fos, 
in response to stimulation of bladder afferents.” In 
addition, c-fos expression in the spinal cord induced 
by chemical bladder irritation is suppressed by 
the NMDA or AMPNkainate receptor antagonists, 
indicating the involvement of glutamatergic trans- 
mission in bladder afferent pathways.”*lo0 Thus, it is 
likely that the micturition reflex is dependent upon 
glutamatergic transmission at various sites including 
the descending projections from the pontine micturi- 
tion center to the sacral preganglionic neurons, the 
spinal processing of afferent inputs from the bladder, 
and the synapses between spinal interneurons and 
preganglionic neurons. 

The micturition reflex pathway can be modulated 
by a variety of other transmitter mechanisms at both 
spinal and supraspinal sites. In the spinal cord, modu- 
lation can occur by segmental interneuronal mecha- 
nisms, or by descending input from the brain (Fig. 6 ) .  

A bulbospinal noradrenergic pathway arising from 
the locus coeruleus in the rostra1 pons has a facilita- 
tory effect on the micturition reflex. This pathway has 
been demonstrated in anesthetized cats by measuring 
bladder activity or neuronal firing in the sacral spinal 
cord elicited by electric stimulation of noradrenergic 
neurons in the locus coeruleus. The excitatory effects 
of locus coeruleus stimulation were blocked by intra- 
thecal administratiod of prazosin, indicating that al- 
adrenergic receptois mediate the  effect.'"'^'"' Since 
destruction of the noradrenergic pathway by 6- 
hydroxydopamine caused urinary retention, and this 
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effect was partially reversed by intrathecal application 
of the a,-adrenoceptor agonist, phenylephrine,1"3 it 
was concluded that this pathway must play an impor- 
tant role in the control of micturition. This is consist- 
ent with the results of a recent pharmacologic study in 
conscious rats showing that intrathecal administration 
of an a,-adrenergic antagonist suppressed reflex 
bladder contractions in the normal rats, and that 
these effects were more profound in the rats with 
bladder hypertrophy."' Spinal a,-adrenoceptors are 
also reported to facilitate the micturition reflex in 
he rat.105,i0b However, other studies revealed that 
a-adrencrgic antagonists did not alter voiding in 
conscious cats or rats, suggesting spinal noradrenergic 
mechanisms may not be active under normal 
conditions. I w , l o R  

Sphincter function is also modulated by the spinal 
noradrenergic pathways. It has been shown that 
striated sphincter reflexes are inhibited by a,- 
adrenoceptor agonists in cats and rats,lob~"'q and that 
central sympathetic and somatic outflow to the lower 
urinary tract in cats is suppressed by a,-adrenoceptor 
antagonists such as prazosin. I 10,1 I I These data indicate 
the existence of a,-receptor-mediated tonic facilita- 
tion of sphincter function and a putative a? inhibitory 
mechanism in the spinal cord. 

In the brain stem, cholinergic mechanisms may be 
involved in both inhibitory and facilitatory modula- 
tion of the micturition reflex. Microinjection of acetyl- 
choline into the pontine micturition center in cats can 
increase or decrease the threshold volume for induc- 
ing a reflex contraction of the bladder."*l" These 
effects were blocked by atropine indicating a role of 
muscarinic receptors. 

Pharmacologic studies in rats revealed that activa- 
tion of central D, dopaminergic receptors facilitates 
the micturition ieflex pathway.'I' In cats, micro- 
injection of dopamine to the pontine micturition 
center also reduced bladder capacity and facilitated 
the micturition reflex,!" whereas intracerebroven- 
tricular administration of dopamine or a D, dopamine 
receptor agonist (SKF38393), inhibited the 
micturition reflex.I' ' Experiments in monkeys with 
parkinsonism induced by a neurotoxin, 1 -methyl-4- 
phenyl- 1,2,3,6-tetrahydropyridine (MPTP), revealed 
that dopaminergic neurons originating in the sub- 
stantia nigra tonically inhibit the micturition reflex. 
MPTP-treated monkeys exhibited hyperreflexic 
bladders as reported in patients with Parkinson's 
disease. 115.1 111 In these monkeys, stimulation of D, 
receptors with SKF38393 suppressed the detrusor 
hyperreflexia, whereas the nonselective dopamine 
receptor agonist (apomorphine) and the D, receptor 
agonist (quinpirole) reduced the bladde; volume 
threshold."" Thus central dopaminergic pathways 
exhibit different effects on micturition via actions on 

-- 

multiple receptors at presumably different sites in the 
brain. 

Enkephalinergic pathways in the central nervous 
system have an inhibitory effect on the micturition 
reflex. Enkephalinergic varicosities are found at van- 
ous sites, including the pontine micturition center, the 
sacral parasympathetic nucleus, and the urethral 
sphincter motor nucleus. Administration of leucine 
enkephalin or opiate drugs to the brain or the spinal 
cord suppresses micturition and sphincter reflexes, 
whereas administration of an opioid receptor antago- 
nist (naloxone) facilitates the micturition reflex in 
animals and humans, indicating that endogenous 
opioid mechanisms exert a tonic inhibition on the 
micturition reflex.h4-l17,1 I R  Among the 3 opiate recep- 
tors @, 6, and K subtypes), the inhibition of the 
micturition reflex at the spinal cord level is mediated 
by Greceptors, whereas in the brain, p and 6receptors 
are involved in enkephalin-mediated inhibition of 
micturition in the cat.L19'"0 In addition, sphincter 
muscle activity is suppressed by Kreceptor agonists."L 
In the rat, both p and 6 receptors mediate the inhibi- 
tory effect on the micturition reflex in the spinal cord 
and the brain.O-' 

Inhibitory amino acids also have a role in modulat- 
ing the micturition reflex. y-Aminobutyric acid 
(GABA) has been implicated as an inhibitory trans- 
mitter at supraspinal and spinal sites, where it can 

recent study using patch clamp techniques showed 
that GABA released from interneurons mediates in- 
hibitory synaptic inputs to the sacral parasympathetic 
preganglionic neurons in the neonatal rat spinal 

Clinical studies also revealed that intra- 
thecal administration of a GABA, receptor agonist 
(baclofen) increased the bladder volume threshold for 
inducing the micturition ref le~.~"- ' .~ '~  Glycine, another 
inhibitory amino acid, is also released from inter- 
neurons in the spinal cord and mediates recurrent 
inhibition on the micturition reflex pathway."" 
Glycinergic inhibition occurs on the descending limb 
of the micturition reflex pathway but not at the level of 
the preganglionic neurons in the cat,"" although 
glycinergic inhibitory postsynaptic currents elicited by 
inhibitory interneuronal inputs to sacral preganglionic 
neurons have been detected in the neonatal rat spinal 
slice preparation."' 

The sympathetic and parasympathetic autonomic 
nuclei, as well as the sphincter motor nuclei, receive a 
prominent serotonergic input from the raphe nuclei in 
the caudal brain stem. Activity in the serotonergic 
pathway generally fnhances urine storage by facilitat- 
ing the vesicosyppathetic reflex pathway and in- 
hibiting the parasympathetic micturition pathway.'.' 
Among the various subtypes of 5-hydroxytryptamine 
(5-HT) receptors, 5-HT, receptors mediate excita- 

act on both GABA, and GABA, receptors.'~'''~''' A 
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tory effects on sympathetic and somatic reflexes to 
increase outlet resistance; whereas 5-HTlc or 5-HT3 
receptors are involved in inhibition of the micturi- 
tion reflex. 127-130 5-HTl, autoreceptors in the raphe 
nucleus are likely to exert an inhibitory control over 
activity of raphe neurons.'27 

Corticotropin-releasing factor (CRF), which is 
contained in neurons within the pontine micturition 
center,I3l seems to be an inhibitory co-transmitter 
in the descending glutamatergic excitatory path- 
way to the sacral parasympathetic nucleus because 
intrathecally applied corticotropin-releasing factor 
inhibits the bladder contractions produced by 
stimulation to the pontine micturition center in the 
rat. 132,133 

PLASTICITY OF BLADDER AFFERENT PATHWAYS 

Recent studies provide evidence that capsaicin- 
sensitive, C-fiber afferents innervating the bladder are 
at least in part responsible for changes in bladder 
motility induced by various pathologic conditions 
such as cystitis, bladder outlet obstruction, and spinal 
cord injury. It is also suggested that the reorganization 
of bladder reflex pathways in neuropathologic con- 
ditions is influenced by neural-target-organ inter- 

This section of the paper focuses on the 
recent findings concerning disease-specific changes in 
C-fiber bladder afferent pathways. 

Cystitis 
The effect of bladder inflammation on the micturition 
reflex has usually been investigated using animals in 
which cystitis is induced by intravesical instillation of 
chemical or pharmacologic agents. Electrophysiologic 
studies in the cat revealed that C-fiber afferents, 
which originally do  not respond to the mechanocep- 
tive stimuli, are sensitized to respond to those stimuli 
after chemical irritation of the bladder." It is known 
that the majority of C-fiber afferents are sensitive 
to capsaicin, which acts on a capsaicin-binding site 
(vanilloid receptor) and causes dose-dependent exci- 
tation, desensitization, and neurotoxicity. I , ' '  Inflam- 
mation is accompanied by a reduction in tissue pH, 
which may play a role in afferent sensitization. Pro- 
tons (H') are known to activate vanilloid receptors in 
afferent nerve terminals, induce an influx of Cali ions, 
and then release neuropeptides such as tachyltinins 
(substance P and related substances), calcitonin gcne- 
relating peptide, or vasoactive intestinal polypeptide, 
which produce local inflammatory responses includ- 
ing plasma extravasation or vasodilation''." (Fig. 4). 
Other endogenous substances such as bradykinin, his- 
tamine, and prostaglandins, which are released in re- 
sponse to the actions of afferent neuropeptides and 
other chemical changes induced by inflammation 

also enhance the bladder motility and neuropeptide 
r e l e a ~ e ] ~ ~ ' ~ ~ ' ~ ~ , ' ~ ~  (Fig. 4). 

These changes in target organs also affect the 
central processing in afferent pathways. It appears 
that tachykinins, which are released from central 
terminals, enhance afferent transmission in the 
spinal cord, thereby inducing bladder hyperactivity. 
Bladder hyperreflexia in a rat model in which cystitis 
is induced by intravesical instillation of capsaicin 
is suppressed by intrathecal application of NK, and 
NIC, receptor antagonists.'38,139 Since tachykinins 
are predominantly found in C-fiber afferent nerves,66 
it is assumed that cystitis elicits bladder hyper- 
activity by enhancing central neurotransmission 
mediated by C-fiber afferents. Nitric oxide is another 
candidate for cystitis-induced changes in afferent 
neurotransmission in the spinal cord. NOS 
immunoreactivity in bladder afferent dorsal root 
ganglion neurons increases in the rat with chronic 
cystitis induced by cycl~phosphamide. '~~ In addi- 
tion, intrathecally administered NOS inhibitors 
suppress bladder hyperactivity associated with chemi- 
cally induced cystitis, but had no effect on the nor- 
mal micturition in the rat.14' Thus, plasticity in 
afferent neurotransmission in the spinal cord seems 
to play an important role in cystitis-induced bladder 
hyperactivity. 

Bladder Outlet Obstruction 
Bladder hyperactivity often occurs in the patients with 
bladder outlet obstruction induced by prostatic hyper- 
trophy. Animal models of outlet obstruction pro- 
duced by partial urethral ligation have been used to 
study mechanisms underlying bladder hyperactivity 
induced by obstruction.' It has been reported that a 
spinal micturition reflex is unmasked or enhanced 
in rats with urethral obstruction.'42 Afferent neuron 
hypertrophy and increased afferent projections in the 
spinal cord have also been detected in these anirnal~.~ '  
These changes in bladder afferent pathways are due 
at least in part to increased levels of nerve growth 
factor in the hypertrophied bladder smooth muscle, 
since autoimmunization against nerve growth factor 
reduced urinary frequency and afferent neuron hyper- 
trophy in the obstructed rat.' J 3 , ' 4 4  It has been specu- 
lated that the bladder hypertrophy and increased 
levels of nerve growth factor are triggered by increased 
bladder work in response to increased outlet resist- 
ance. A high-affinity tyrosine kinase receptor, trkA, 
that binds nerve growth factor is expressed in C-fiber 
afferents. 1 4 j  Thus, plasticity in the C-fiber affcrcnt 
pathway may be inyolved in bladder hyperactivity 
associated with outlet obstruction. It has also been 
proposed that enhanced afferent transmission in the 
spinal cord mediated by tachykinins contributes to 
obstruction-related bladder hyperactivity, since the 
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effects of intrathecal administration of an NIC, recep- 
tor antagonist on the micturition reflex were greater in 
the rat with urethral obstruction than in the normal 
rat,lis 

Spinal Cord Injury 
Spinal ccrd transection rostra1 to the lumbosacral 
;we1 abolishes voluntary control of voiding as well as 
thc apinobulbospinal micturition reflex. However, 
after an initial period of detrusor areflexia, a spinal 
reflex pathway emerges that mediates automatic 
micturirion and detrusor hyperreflexia.134,135 Electro- 
physiologic and pharmacologic studies in chronically 
spinalized cats indicate that the spinal micturition 
reflex is mediated by C-fiber afferents and is blocked 
by systemic capsaicin admin i~ t r a t ion .~~ ,~ '  Vasoactive 
intestinal polypeptide immunoreactivity, which is a 
marker for bladder C-fiber afferents,' ' ~ ~ ~ 9 ' ~ '  is distrib- 
uted in a wider area in the spinal cord in spinalized 
cats."' In spinalized animals, small doses of vasoactive 
intestinal polypeptide administered intrathecally fa- 
cilitated the micturition reflex; whereas in normal ani- 
mals, vasoactive intestinal polypeptide inhibited the 
reflex, suggesting that an alteration in the actions of a 
putative C-fiber afferent neurotransmitter is impor- 
tant in the emergence of C-fiber-mediated spinal 
micturition reflexes.l,"%' 'l 

In paraplegic animals and humans, reflex voiding 
is inefficient due to tonic activity of the urethral 
sphincter (detrusor-sphincter dyssynergia) . In rats, 
this functional outlet obstruction induces bladder 
muscle hypertrophy similar to that occurring after 
outlet obstruction induced by partial urethral liga- 
t i o n ~ l ' X . l ~ "  Both conditions are associated with afferent 
neuron hypertrophy."'.''" Electrical recordings using 
patch clamp techniques revealed that hypertrophied 
bladder afferent neurons in spinalized rats exhibit 
increased excitability duc to a shift in expression of 
sodium channels from high-threshold tetrodotoxin- 
resistant to low-threshold tetrodotoxin-sensitive chan- 
riels. I i 1 . I  iZ In normal animals, tetrodotoxin-resistant 
sodium channels are mainly expressed in capsaicin- 
sensitive C-fiber afferent  neuron^.^^^'^^ 

Another type of plasticity in C-fiber bladder 
afferent neurons after spinal cord injury was evident 
as a change in neurofilament immunoreactivity in the 
cells. In normal animals, C-fiber neurons that are 
small, in size exhibit poor or no neurofilament 
staining."" However, spinal cord injury significantly 
increased the number of afferent neurons with 
prominent neurofilament immunoreactivity.'54 In 
addition, the sensitivity of bladder afferent neurons 
to capsaicin decreased in spinalized rats.'" Taken 
together, these findings indicate that spinal cord in- 
jury induces various phenotypic changes in C-fiber 
bladder afferent pathways, in parallel with the emer- 

gence of the C-fiber-mediated spinal micturition 
reflex. Since urinary diversion in spinalized rats pre- 
vented the hypertrophy of the bladder and of the 
bladder afferent ne~rons , '~"  it has been suggested 
that neurotrophic factors released in hypertrophied 
bladder muscles by functional bladder outlet obstruc- 
tion secondary to bladder-sphincter dyssynergia are 
responsible for the afferent neuron plasticity and thus 
contribute to the emergence of bladder hyperactivity 
after spinal cord injury. 

Clinical Studies 
The involvement of C-fiber afferents in neurogenic 
bladder hyperactivity in humans has also been 
demonstrated in clinical studies in which intravesical 
instillation of capsaicin suppressed bladder hyper- 
activity in patients with various types of neurogenic 
disorders of the lower urinary tract, including spinal 
cord injury. When administered intravesically in 
concentrations between 100 pmol/L and 2 mmoliL, 
capsaicin increased bladder capacity and reduced the 
number of incontinence episodes in patients with 
spinal cord injury or multiple ~c le ros i s . ' ~~  15' The 
effects of high concentrations of capsaicin in patients 
with multiple sclerosis persisted for weeks to months 
after treatment. Capsaicin also increased bladder 
capacity and reduced irritative symptoms in patients 
with hypersensitive 

Another example of a reorganization of C-fiber- 
mediated reflex pathways was obtained in studies 
of the cold stimulation-evoked voiding reflex. It is 
known that instillation of cold water into the bladder 
of patients with upper motoneuron lesions induces 
reflex voiding (the Bors ice water test)."" This 
reflex does not occur in normal subjects. It has 
been shown in the cat that C-fiber bladder afferents 
are responsible for cold-induced bladder reflexes." 
Intravesical administration of capsaicin to paraplegic 
patients blocks the cold-induced bladder reflexes, 
indicating that they are mediated by C-fiber afferents 
in humans as well.15'' The ice water test is also positive 
in patients with multiple sclerosis, cerebrovascular 
disease, and Parkinson's disease, as well as in in- 
fants. I f 1  I ,  161 Thus, it is suggested that cold-evoked 
bladder reflexes are enhanced or unmasked after 
the elimination of supraspinal controls by spinal cord 
injury or damage to central pathways in patients 
with multiple sclerosis. It is noteworthy that the 
cold-induced bladder reflex also has been detected 
in elderly patients who have uninhibited overac- 
tive bladders without any other obvious neurologic 
problems. I h i  Taken together, these observations 
suggest that cabsaicin-sensitive, C-fiber bladder 
afferents are involved in various pathologic conditions 
associated with neurogenic bladder hyperactivity in 
humans. 
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CONCLUSIONS 

The 2 main functions of the lower urinary tract (stor- 
age and periodic elimination of urine) are controlled 
by a neuronal switching circuit that maintains a recip- 
rocal relationship between the reservoir (bladder) and 
the urethral outlet (urethra and urethral sphincter). 
This switching depends upon glutamatergic excitatory 
transmission. Various neural pathways and trans- 
mitters in the brain and spinal cord also mediate 
excitatory and inhibitory influences on this switching 
mechanism. Studies in animals and humans indicate 
that changes in target organ functions that occur in 
various pathologic conditions have a significant effect 
on the bladder afferent pathway to alter spinal reflex 
mechanisms, resulting in bladder hyperactivity. A 
more precise understanding of the mechanisms 
responsible for these disease-specific changes will no 
doubt lead to new treatments of lower urinary tract 
dysfunction. 
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